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Abstract Although classical computer vision tasks
such as instance segmentation has reached high accu-
racy, it does not provide sufficient information for re-
liable decision making in more complex downstream
tasks that requires further spatial context, e.g. au-
tonomous driving. Amodal perception tasks such as
amodal instance segmentation and 3D object detec-
tion, can provide adequate information for making
difficult spatial decisions.

Amodal segmentation is the pixel-accurate segmen-
tation of object shapes, including the occluded re-
gion. We tackle this problem using the principle that
depth is an inherent part of occlusion. We propose
a novel depth-aware amodal instance segmentation
network, DAISnet, to fully utilize depth information
for amodal instance segmentation. Given the net-
work is already using 3D contextual information, we
extend our network to make 3D bounding box pre-
dictions using point clouds and 3D convolution. By
using 2D proposals, we significantly reduce the com-
plexity of finding 3D Rols, which enable us to make
fine-tuned predictions at these attentive regions. To
address the lack of training data, we propose a syn-
thetic augmentation dataset to enhance network per-
formance on existing datasets e.g. Kitti. Our ex-
periments demonstrate that synthetic data can sig-
nificantly improve accuracy in the most ambiguous
cases.

Keywords: Instance Segmentation, Amodal Per-
ception, 3D Object Detection, Deep Learning, Syn-
thetic Data Collection

1 Introduction

1.1 Amodal Instance Segmentation

Amodal instance segmentation is the segmentation
of the visible and occluded region of all objects from
an image, as shown in Fig 1. Visible objects can be
segmented with a high degree of accuracy thanks to
progress made in the last few years. Segmenting oc-
cluded regions of an object, is much more difficult
to achieve. There is no single probable solution for
some occluded regions as Fig 2 demonstrates, and
it requires a high level understanding of the image
semantics to achieve reasonable predictions. The an-
notation of amodal instance segmentation is also ex-

Fig.1: Amodal instance segmentation segments the
entire object while modal (visible) instance segmen-
tation only segments visible regions

pensive, as it requires annotators to thoroughly ex-
amine all possibilities. Although the task appears ill-
posed, past works have demonstrated that high qual-
ity amodal instance segmentation is achievable and
helpful. Amodal instance segmentation is also a nec-
essary stepping stone for tasks that require greater
amodal awareness, such as 3D amodal segmentation
and amodal reconstruction. Amodal instance seg-
mentation is also useful in numerous down-stream
tasks. Self-driving vehicles can make better decisions
on road using occlusion and spacial information. Oc-
clusion information offers robust information on the
order of vehicles for better navigation, while spacial
information can help deduce viable parking regions.
Amodal instance segmentation is also important in
robotic vision. Navigation towards an occluded ob-
ject, efficient retrieval of objects in complex environ-
ments, and preemptive measures all benefit from ac-
curate amodal instance segmentation predictions.

Past works regarding amodal instance segmentation
involves the use of Mask R-CNN architecture which
have achieved state of the art performance in visi-
ble instance segmentation. [1-5| Direct implementa-
tion of such architecture have yielded reasonable re-
sults. Most amodal instance segmentation networks
improve upon this architecture. Notably, Xiao et
al.[6] introduced a code-book mechanism that con-
ducts feature mapping based on pretrained 2D shape
awareness. Amodal mask are refined through this
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Fig. 2: There can be multiple amodal predictions
given the nature of uncertainty. P3 is the closest
to ground truth, but both P1 and P2 are possible
predictions. This shows that it’s difficult to obtain
accurate results in amodal instance segmentation

process, improving the accuracy of such predictions.
However, there are limitations in representing 3D ob-
jects in a 2D context, which neglects actual spacial
relationship between objects, as well as it’s 3D fea-
tures. We believe depth is inherent to occlusion, as
it provides information on possible occluded regions
and additional features of visible regions. More in-
formation about the visible regions of an object can
help make better predictions on amodal predictions.

We improve upon previous solutions by creating
a depth-aware amodal instance segmentation net-
work (DAISnet) through a monocular depth predic-
tion layer pretrained on synthetic and real-life data.
Depth information is incorporated into the backbone
feature extraction pipeline to make our network fully
depth-aware. Depth information is regionally nor-
malized and computed into a normal tangent map
through a normal tangent encoder. Normal maps
help describe the change in 3D surface while being
distance invariant. To best utilize tangent and depth
information, we introduce the Edge Occlusion and
Tangent Occlusion modules which relies on normal-
ized depth and tangent information of objects to pre-
dict possible regions of occlusion, which is essentially
a rough prediction of amodal masks. We base this
from the principle that areas directly touching visible
objects with smaller depth (closer to the observer)
have a very high possibility of being the occluder.
We refine amodal mask predictions using depth in-
formation for 3D shape prior mapping, which pro-
vides rich features even under circumstances with ob-
scure shapes. We used a 3D real-time graphics engine
to generate synthetic data of objects with occlusion,
photo-realistic colors, depth and amodal segmenta-
tion masks. This workflow allows us to generate large
quantities of data with accurate pixel-level ground
truth based on various scenarios for training.

1.2 3D Object Detection

3D Object Detection is the detection of objects with
their 3D bounding boxes. This is much more difficult

Fig.3: 3D object detection is the prediction of 3D
bounding boxes using 2D or 3D data.

as there needs to be extensive spatial understand-
ing of the object for an accurate 3D boundary to
be predicted. Advancements in computational power
has enabled developments towards this area. By us-
ing using LIDAR point clouds and depth maps, par-
tial or full 3D features can be extracted to acheive
3D Object Detection. 3D Object Detection is cru-
cial towards autonomous navigation in vehicles and
beyond. No reliable predictions can be made in our
3D world using purely information from 2D contexts,
such as Instance Segmentation.

3D Object Detection suffers from longer training and
inference times, data deficiency, and loss of accuracy
in encoding point clouds and other 3D data. We pro-
pose methods to address these issues by augmenting
a trained network with additional synthetic data, use
existing 2D network components and decrease pre-
diction times by improving attentiveness of our net-
work. Notably, we used the Mask-RCNN network for
feature extraction and 2D object detection. By pro-
jecting these information to a 3D representation, we
can minimize complexity in locating regions of inter-
est and use rich 2D features from backbones trained
on ImageNet for 3D object detection.

1.3 Contributions

Our contributions can be summarized as:

— A novel depth-aware network for amodal in-
stance segmentation.

— A synthetic dataset that can be used for depth
prediction, amodal instance segmentation, and
3D object detection training that enhances per-
formance and accuracy on existing datasets.

— A post refinement Rol mask head for amodal
completion using depth and tangent information.

— A 3D codebook mechanism for amodal mask re-
finement based on 3D shape prior.

— A 2D-3D hybrid network using Mask-RCNN for
efficient 3D object detection.
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2.1 Instance Segmentation

Instance Segmentation segment and classify in-
stances’ visible part separately from the image.
Amodal instance segmentation extends directly from
research in instance segmentation, which itself ex-
tended from research regarding object detection.
Ross at el. [7] introduced the R-CNN network, which
selects region of interests from an image and con-
duct convolutions on these regions. Regional CNNs
have supersede all previous implementations in per-
formance and accuracy. Ross at el. [8] introduced the
Fast R-CNN network that significantly faster than
R-CNN, which was later improved again into Faster
R-CNN [1], which improved proposal quality and
performance by using a Region Proposal Network for
proposal generations.

He et al. extends Mask R-CNN [2] to instance seg-
mentation by introducing a Mask Head, which con-
ducts segmentation on detected objects using work
derived from Long at el. [9] on semantic segmenta-
tion using Fully Convolutional Networks(FCN). He
also proposed Rol Align solution in place of Rol pool-
ing which achieved pixel accurate region of inter-
ests. Chen et al. [3] incorporated Cascade techniques
[4] to Instance Segmentation and improved accuracy
through stage specific refinement. Ding et al. [5] ex-
tends cascade instance segmentation by taking ad-
vantage of separate stages to establish a bidirectional
relation between the mask and the bounding box. By
introducing a mask guided Rol align method, the
bounding box and mask prediction continues to re-
fine each other for accurate instance segmentation.
Mask Scoring R-CNN [10] aims to reevaluate pre-
dicted masks by giving lower scores for masks with
bad quality, and thus improve mask prediction.

2.2 Monocular Depth Estimation

Monocular depth estimation use one image to infer-
ence depth of each pixel to achieve a 2D-3D pro-
jection. Monodepth [11] proposed a self-supervised
training pipeline for monocular depth estimation.
They used a FCN to predict disparities for recti-
fied stereo images and supervise it via an image
reconstruction loss. Godard et al.[12] extends the
monodepth model to a video-based monocular depth
estimator. Performance was improved by introduc-
ing a Per-Pixel Minimum Reprojection Loss, Auto-
Masking Stationary Pixels, and Multi-scale Estima-
tion. Fu et al. [13] directly regress the depth through
a CNN and introduced a method for monocular
depth estimation that relies on space-increasing dis-
cretization, differing from past implementation by its
smaller architecture and faster convergence, achieved
very accurate results. Lee at al. [14] utilizes planar
guidance layers in multiple stages of decoding, which
utilizes light and color changes to generate surface
information for depth prediction.
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2.3 Amodal Instance Segmentation

As work regarding modal instance segmentation be-
gins to yield state-of-the-art results, research have
been done to extend instance segmentation to oc-
cluded region of objects. Some early work involves
directly extending and modifying existing R-CNN
architecture to support amodal instance segmenta-
tion [15-17] Li at al. [18] used an iterative bounding
box method to filter amodal instance segmentation
results from a CNN. Xiao et al. [6] used a 2D-shape
prior codebook that conducts feature matching to
enhance amodal instance segmentation predictions.
Zhang et al. [19] introduces a semantics-aware dis-
tance map that allows for pixel level amodal segmen-
tation and occlusion order prediction. Others have
tried to include abstract feature awareness to achieve
more accurate amodal segmentation predictions [20]
Yang et al. [21] extended amodal instance segmen-
tation using multi-perspective images that are taken
at positions determined by the network. Deng [22]
used depth information to predict amodal bounding
box of 3D objects with large success. This demon-
strates that 3D visual features can enhance amodal
predictions overall and the 2.5D visual features are
correlated to 3D object sizes, locations, and orienta-
tions.

2.4 3D Object Detection

Song [23] proposed a method of projecting depth
data into 3D point clouds, then conduct 3D convo-
lution similar to that of Faster-RCNN called sliding
shapes to find 3D regions of interest that may lo-
cate the object in its 3D boundaries. This method
however, is expensive as convolutions in 3D are
much larger and memory-consuming. For larger open
scenes like open roads, directly conducting 3D con-
volutions will take too much time. Charles [24] pro-
posed PointNet which avoids conducting convolu-
tions on voxel grid data by directly operating on
point clouds. Direct operation on raw point clouds
are more accurate than convolutions, as converting
point clouds to voxels results in degradation of fea-
tures. Chen [25] proposed a BEV (Birds Eye View)
representation of 3D data, which could then be pro-
cessed in 2D. This is still employed by many high
performing networks [26-29]. The use of raw point
clouds and voxels still remains a debate, Voxel R-
CNN [30] demonstrated that by using voxel infor-
mation appropriately, similar levels of performance
to raw point clouds can be achieved with significantly
less processing time. PV-RCNN [29] points out that
both Voxel and Raw Point Clouds have their advan-
tages, and proposed a method that combines both
formats for best results. Our 3D Object Detection
model is based upon PV-RCNN.
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3 Method

3.1 Overview

Our network improves upon the Mask-RCNN net-
work that was adapted for amodal instance segmen-
tation, with the 3D object detection section serving
as an integrated extension. We initially proposed a
depth-based network for amodal instance segmenta-
tion only, this will be referred to as DAISnet (Depth-
Aware Amodal Instance Segmentation Network). We
first obtain depth information from LIDAR data,
though a monocular depth prediction network [14]
can be used instead to conduct this task in monoc-
ularly. Fig 4 demonstrates our complete network.
The extracted/predicted depth map is first passed
to the feature extraction backbone alongside RGB
data. The backbone extracts feature maps and gener-
ate proposals using the Regional Proposal Network;
Since depth information was included in feature ex-
traction, this entire process is depth-aware.

Depth information is also explicitly given to the Rol
pooling layer to generate pooled depth regions with
the same dimension as the object proposals. Box pro-
posals are then used to generate visible mask pre-
dictions through the visible mask head. The visible
mask and depth information are both passed to the
3D-aware refinement layers, which consists of occlu-
sion edge and 3D shape prior refinements.

The occlusion edge refinement layer uses localized
depth values to deduce possible regions of occlusion,
which is then given to an occlusion refinement head
that refines the amodal mask using occlusion edges.
The 3D shape prior is based upon 2D shape prior
works done by Xiao et al. [6]. The shape prior mech-
anism uses deep learning to effectively encode and

BEV Rol Pooling

decode shapes. Statistical operations such as cluster-
ing can be done on encoded shapes, which is used for
shape matching and refinement based on prior seen
shapes. 3D shape prior uses localized depth informa-
tion during encoding, which means that the stored
codebook contains 3D representations of objects. Af-
ter refinement through both modules, the network
returns the final amodal instance segmentation re-
sults.

The integrated network, which includes Amodal
Instance Segmentation and 3D Object Detection
is called ESAAN (Efficient Synthetic Augmented
Amodal Network). The 2D proposal network yields
high recalls on object detection, we exploit this ad-
vantage by mapping 2D proposals directly onto the
3D scene, including the features extracted by the
ResNet50 backbone. By locating regions of interest
prior to the actual convolution, our network only
need to encode regions around the 2D proposals,
which is much faster. We transform this grid based
aggregation of point clouds to a BEV (Birds Eye
View) representation, which is the scene viewed from
top down. Another 2D regional proposal network
operates over this BEV to obtain bounding boxes,
where 3D bounding boxes can be deduced, as most
objects are horizontal to ground.

We noticed that most networks suffer from low recall
in sparse point cloud situations, on a dataset that has
very few samples of. Since LIDAR point clouds could
be easily produced, we created a dataset similar to
Kitti which our model will train on first. Then we
use transfer learning to train the model on the actual
Kitti dataset.

Figure 4 shows the ESAAN architecture; However,
DAISnet, which is the none 3D part of the net-



work, can be trained and executed separately for
pure amodal instance segmentation. Our albation
studies on amodal instance segmentation will only
consider the DAISnet portion of ESAAN.

3.2 Synthetic Data Collection

Fig. 5: High-fidelity street scene created within Unity
Engine using premade assets. The camera will move
through the street, and objects will be placed around
it. This mimics many of the images in KITTI which
was taken in a narrow street with vehicles.

To create a dataset that contains both segmentation
and depth data, we decided to develop a synthetic
dataset using Unity Engine(C). Similar to the KINS
dataset used in past research, our synthetic dataset
focuses on amodal instance segmentation of Pedes-
trians and Vehicles in street and road scenarios. For
our street scenario, we setup a 3D street that spans
for 100 meters long. Buildings and other items are
placed for realism and to ensure our network knows
how to ignore distractions. The camera moves ran-
domly through the street within a fixed boundary.

The range which a vehicle could be placed is denoted
below:

-5<z<5 (1)
<y<2 (2)
0<2<50 (3)

The additional random parameters for a vehicle is:

V. =7r(2,3)
VeV, =[r(-10,10), v, z+7(10,50)]  (4)
V, =10, r(0,360), 0]

Where for vehicle V: V,, denotes number of vehicles
in the scene, V,, denotes position vector of a spe-
cific vehicle , v denotes a constant y value for ve-
hicle height, V. denotes rotation of V' euler angles,
r(min, maz) specifies a random value between two
inclusive values.

We assigned bounding boxes for each of the object
and use it to detect for collisions. Overlapping ob-
jects will continue to move until it found a suitable
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location. For pedestrians, we opted for 2D cutouts
placed among the street using a very thin colli-
sion box. The ratio of vehicles and pedestrians is
roughly 1:3. The directional light in the scene is also
randomly changed per image, so to make sure our
dataset is not prone to shadow and light variances.
Post processing image effects such as bloom, which
blurs bright regions of an image to mimic bright light
is also used for photo realism.

Fig.6: The Openroads subset of RGSD, which con-
tains RGB, depths and annotations of amodal and
visible masks.

After the scene is set up, the camera will render four
passes. The RGB pass - objects with proper lighting
and albedo textures. The Depth pass, where a frag-
ment shader will compute linear depth between 0 and
50 meters using geometric data. Unlike other depth
datasets like KITTI which uses LiDAR, our ground
truth depth does not contain gaps and is pixel ac-
curate, this significantly improves the quality of our
ground truth data. The final two passes are modal
and amodal masks of each generated object, which
is generated by assigning an unlit color to the target
geometry, while other objects only effect it through
occlusion for visible mask capture.

While the street scenario focuses on Pedestrians and
few cars in a complex environment, the open roads
scenario generates data with lots of vehicles. A simple
road network in the form of a graph is established.
Vehicles will move through this road network, simu-
lating traffic and road scenarios. Our camera follows
one of these vehicles, for every random interval be-
tween 1 and 2 seconds, the camera will initiate a
scene check to determine is enough vehicles are in-
front of it for valid data capture.

For 3D object detection, we also created a RGSD-
LIDAR dataset to simulate point clouds, espe-
cially scenarios with low point cloud density. Using
Blender and Open3D, we created low-poly triangu-
lated meshes of cars, pedestrians and cyclists (Fig-
ure 7). We randomly place objects, similar to the
methods above, then scatter points on the surface of
the mesh to simulate LIDAR collisions. The scene is
made to mimic the Kitti dataset, where the observer
is in the middle of the road, with vehicles and other
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Fig. 7: Triangulated low-poly model of a cyclist.

objects distributed on the side. We deliberately re-
duce the point clouds to simulate scenarios at the
edge of a LIDAR sensor’s range, as seen in Figure 8.

Fig.8: Synthetic point clouds with extremely low
density

3.3 Depth

Monocular Depth Prediction To predict amodal
instance segmentation on datasets like KINS which
do not provide depth data, we rely on a pretrained
monocular depth prediction module. Our model sup-
ports monocular inference by using a monocular
depth prediction module. We used the BTS network
[14] with a backbone trained using ResNet50 on the
KITTI Eigen Split depth dataset. We also trained the
BTS network [14] on our own DAIS-RGSD dataset.

This monocular prediction module is inserted before
the actual backbone. By doing this, our network is
able to predict a depth map of our RGB input, and
send it to the module. The depth information is also
passed to the Rol Head module for occlusion edge
and amodal proposal calculations.

For input RGB image I, we define monocular depth
prediction as f}'. For raw depth map D":

D" = f7"(I) ()

LIDAR Depth Projection The Kitti dataset pro-
vides depth maps that were projected from LIDAR
point cloud. However, the point clouds are sparsely
distributed. We created a dense depth map using a
method that samples neighboring points [31] to cre-
ate a dense depth map. We project and fill point
clouds ¥ to raw depth map D".

Depth Normalization Depth values are in an en-
tire different representation than RGB values within
the range of 0-255. Our model normalizes I to I"
using standard deviation and mean. Notably:

L, -1,

I = I

(6)
Fori =1, ..., 1,75 =1, ..., Iy. Where I, and
I, denotes the mean and standard devitation of I
respectively.

The same normalization is applied over depth D,
but its exponential depth value is first linearized to
achieve linear depth:

D;j = logio(D;j) (7)

Depth

Fig.9: Monocular depth prediction from a single
RGB image from the KITTI dataset, the model used
the BTS Network with a DenseNet161 backbone.

It is not possible for depths to be normalized on
a per object basis, as that would require the com-
plete segmentation of objects within the image ac-
curately. Since we want the network to be entirely



depth-aware from the beginning, other normalization
methods have to be used. The approach using visi-
ble regions to normalize depth per object however, is
used in the Edge Occlusion refinement head.

Although it is not possible to completely remove ob-
ject distance variance entirely without object data,
we can significantly reduce its impact using a Re-
gional Depth Normalization scheme. The scene is be-
ing split into subregions occupying a slice of the full
distance, the size of a subregion is called the step
size or D. We use the floor function to acquire the
subregion of any given depth:

n Dij
Dy =Dy - | 32| %D, (®)
Where D; represents the depth value of a single pixel,
D;r represents the base reference distance / sub-
region this pixel belongs to. We obtain the results
shown in Fig 10 B, although the floor function di-
vides the image into subregions, there exists a hard
edge between regions. For this, we introduce a soft
floor function =:

Where x is rounded down to the greatest integer less
than x with a smooth interpolation between integers.

. . . Dy =
We use this function to pass in {5 as x, obtaining
the result in Fig 10 C.

'?‘- -
il
Fig A (Depth)

Fig B (Floor)

C Todl o
Fig G (Offset 75%)

o

Fig. 10: Regional depth normalization pass.

Fig C (Soft Floor)

Although this method greatly decreases variance
caused by difference in distances, regional normaliza-
tion still means that objects will have some variance
in distance as seen in Fig 10 D. This could be min-
imized by decreasing the step size, but it will make
the data less perceivable to the backbone and feature
extraction. To address this, we introduce an offset
value, which creates multiple regional depth maps at
different global offsets. We specify the number of off-
set maps as D,,,, which in our setup is 4 by default.
Each offset map should have a different offset value,

which is obtained simply with g = This means we
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Y Gradient Map

X Gradient Map

Fig. 11: Normal tangent information obtained using
the same depth map in the previous figure. The gra-
dient maps show the raw outputs of a 5x5 Sobel filter

over 92 and 9P The final normal tangent map uses
dz dy

a hyper-parameter % of 0.7.

are creating D,, different regional depth maps over
equal intervals between the step size D,. This pro-
duces multiple regional depth maps as shown from
Fig 10 D to Fig 10 G. A D,,, of 4 is suitable as each
object now has a representation of its regional depth
in roughly all possible ranges. The remaining vari-
ance in distance can be ignored due to its insignifi-
cance. This makes individual objects almost invari-
ant to distance, as it includes a normalized depth rep-
resentation of itself in ranges [(0, 0.25), (0.25, 0.5),
(0.5, 0.75), (0.75, 1)] approximately. This means the
the backbone will receive 4 additional channels as
depth inputs, for each regional depth map. Exper-
iments on the effect of various D,, and D, on the
quality of object detection and mask prediction will
be conducted.

3.4 Normalized Tangent Map

Depth information however, has extreme variance
shifts by nature. Fundamentally, RGB values repre-
sent the intensity of each primary color; Depth val-
ues represents distance from the camera, this poses
a problem, as two objects of the same orientation,
shape and feature at two distances will produce com-
pletely different sets of depth values. Thus the prob-
lem of normalizing global depth to match the RGB
input is ill-posed, as there is no perfect way to nor-
malize the depth of every object prior to object ex-
traction and segmentation. Which poses a problem
in using depth information for backbone feature ex-
traction.
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A way to remove distance variance of depth infor-
mation is to compute normal tangent maps. Normal
tangent maps represent the tangent of a surface at
a specific pixel in the form of a normalized vector,
where its xyz component translates to RGB respec-
tively, creating an image of 3 channels. Tangent nor-
mal maps have been used extensively in computer
graphics as it is an easy way of representing 3D sur-
faces without actual geometry. In our case, we essen-
tially obtained 3D features of an image with depth in-
variance. Tangent normal maps are also represented
in RGB, which our network backbone is already de-
signed and tested for.

To compute tangent normal maps, we must first ob-
tain the partial derivatives of every pixel. Because
depth data is discrete, we can only estimate its gra-
dient at a given pixel. We use the Sobel-Feldman
operator, a discrete differentiation operator that pro-
duces approximations of gradients. For an arbitrary
kernel size of N, we define Sobel filter SV as:

[S11 Si2 Siz ... Sin |
So1 S22 S23 ... San
S31 532 S33 ... S3n
S41 Saz Sa3 ... San

|Sn1 Sn2 Sns - .- SN

Where for S,, we denote j and ¢ as its vector from
the center o:

. N-1_,
J=Y - —5 =

2 N1
(11) i=a-—p—-1(12)

Using ¢ and j, we can formulate a general equation
for sobel filters of any size N:

i J
SN — _—— _ (13 sV =_<1 _ (14
Tij 12—|-j2 ( ) j ( )

Using this equation, we obtain for instance the de-
fault 5x5 Sobel filter in the X direction, S2, used for
normal tangent calculations:

5 —4 0 4 5
~8 -10 0 10 8
~10-20 0 20 10 (15)
-8 -10 0 10 8
5 —4 0 4 5

It is multiplied by a constant factor of 20 to obtain
integer values.

By conducting convolution using the Sobel filter on
the depth map, we obtain the following vector:

_Dmi
T, = |-Dy, (16)
D.

Where i represents a single pixel, T; represents the
tangent at pixel 4, D;; and D, represent the approx-
imate gradient in x and y direction at pixel 7. D, is
a hyper-parameter that represents the magnitude of
the Z component, this effects how sensitive the fi-
nal tangent is with respect to change in D, and D,.
There is no specific value for D, because the strength
of both the normal map and the depth map which it
derives from is arbitrary, thus D, is also arbitrary.
The higher D, is, the less sensitive our tangent is to
change and vice versa. For our model, we used a D,
of 0.8.

T, can be considered the raw tangent of a given pixel,
the final normal tangent map is obtained by calcu-
lating the unit vector of T;. This is done by dividing
each vector by its Euclidean norm:

LT T;
\/DwiQ + Dyi2 + D22

(17)

Where T; is the normalized tangent vector of pixel
i.

3.5 Depth-Aware Feature Backbone

Our backbone is based on ResNet50. It received with
RGB input in the dimension of (N, C;,, H, W), or
(1, 3, 2656, 800) by default. The monocular depth
prediction module produces a tensor of size (1, 4,
2656, 800) when using a subregion Dy of 4. We de-
fine the feature extractor operation as f,, obtaining
feature map F:

F = f-(cat(I",D)) (18)

We simply concatenate depth D as addition channels
using the matrix operator cat, which results in a ten-
sor of size (1, 7, 2800, 400) for I+D. To accommodate
for this increase in channel count, the first layer of
our network is also modified. To best preserve the
pre-trained weights, we preserve the weights for the
original three channels, and repeat it for the sub-
sequent channels. The same applies for the normal
tangent input, which 3 channels.

Because objects can occur at various different sizes in
instance segmentation, feature maps that are either
too complex or simple may have negative effects on
classification and segmentation The backbone thus
generates feature maps at different dimensions as im-
plemented in Mask R-CNN. Since we require depth
as an explicit information in proceeding layers, a sep-
arate set of depth maps is generated alongside the
feature maps, it is scaled using Bilinear interpola-
tion.



Fig. 12: The backbone extracts features from an im-
age, usually hundreds of channels. Each channel is
sensitive to one or multiple visual features. Multi-
ple feature maps of various resolutions (extracted at
different layers of the backbone) and channels are
shown below.

3.6 RPN and ROI Pooling

For the regional proposal network, we directly target
training towards predicting amodal bounding boxes.
We define the generation of valid 2D proposals as f,,

valid 2D proposals as {Pf‘}é\;lz

fu(F) = {P?}Y, (19)

Where loss LClS(P,f’) and Lreg(P,P) calculates
classification and box regression loss respectively,
which is the same as Mask-RCNN[2]. P is the set
of ground truth amodal proposals

Region of Interest Pooling is the extraction of the
bounding box portion of the feature map for eval-
uation. Mask R-CNN used an heuristically defined
equation to specify which feature map to use:

fo-|t+om(L)| e

Where ¢ is the area of the proposal box, fi(e) is the
feature map index.

We define f? as the pooling operator, D? as the
pooled depth map, and F? as the pooled feature.
For proposal P;:

D”, F? = fX(F, f}(P5), P;) (21)

Since depth information is required for occlusion
edge calculation on a pixel to pixel accuracy, depth
maps are also scaled to the same resolutions as the
feature maps, and pooled alongside feature maps.

3.7 Visible and Amodal Coarse Mask

After obtaining pooled feature map F? and DP?, we
directly estimate visible mask V and amodal coarse
mask A, using the same mask head as Mask-RCNN.
We obtain visible mask loss and amodal coarse mask
loss £, and L, respectively.

3. METHOD 9

3.8 Occlusion Edge Refinement!

If the visible region of an object is touching another
region that is in front of it, it is highly likely that the
object is being occluded in this direction. To best
represent occlusion orders relative to the object, we
calculate the pooled normalized depth D? as:

N
1 D’ V,=1
pr= S ¢ 22

D? = D? — D? (23)

For N = HxW

The occlusion edge module predicts segments of a
visible mask that is possibly being occluded instead
of being its natural boundary. We use the intersect-
ing edge between amodal and visible ground truths
masks to generate the ground truth for occlusion
edge. A Gaussian blur is applied over this edge for
relative tolerance. Loss is calculated as:

We define the occlusion edge refinement as f,, which
receives coarse amodal mask A., pooled normalized
depth D? | and outputs refined amodal mask A,. The
occlusion edge refinement loss, L., is:

HxW

»Coe = Z ﬁBCE(fo(Aci7D£i)v AZ) (24)

i=1

A denotes the ground truth amodal mask.

Notably, Lpcp denotes the Binary Cross Entropy
loss:

N
. 1 _ N
Lpce(y,9) = N > i -log §i + (1—y:) - log (1—;)
i=1
(25)

We also had different implementations of the occlu-
sion edge module as seen in Fig 14. The first imple-
mentation is an micro FCN network, this network
deals normalized depth information as a classifica-
tion and segmentation problem. The second imple-
mentation copies the structure of the amodal mask
head, with deep convolutions to extract and use fea-
tures from the normalized depth map for occlusion
edge prediction. The third implementation is a sim-
ple 1x1 convolution that simply infers potential areas
of occlusion based on the depth value on that pixel.
The setup can be selected based on training config-
urations, the best will be chosen during the experi-
mentation phase.

'Occlusion Edge and Edge Occlusion can be used
interchangeably, OE and EO stands for the same module.
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Amodal Mask

Visible Mask

Occlusion Edge Pooled Depth

Fig. 13: Ground truth (ideal) masks at occlusion edge. Occlusion edge is focused on inferring the unseen based
on visible and depth information. The pooled depth data shows strong feature resemblance to the occlusion
edge, it is easy to infer these regions are potentially occluded.

Mode 1 Mode 2 Mode 3
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Fig. 14: Three different setups for the Edge Occlusion
module.

3.9 3D Shape Prior Refinement

The fundamentals of predicting the unseen region
is based o n the seen regions and features to look
for similar seen shapes, or shape prior for amodal
completion. This is already implicitly achieved by
the amodal prediction mask head. Weights are
already trained to correspond visible features to
amodal shapes, this is why the Mask-RCNN net-
work can make reasonable amodal predictions with-
out any modification - shape memorization is implic-
itly achieved during training. The shape prior refine-
ment process, first introduced by Xiao at el. [6] fur-
ther exploit this principle by explicitly storing and
matching seen shapes for refinement.

The shape prior refinement process can be simpli-
fied into a problem of finding and matching differ-
ent seen shapes. It is much easier to find similari-
ties between shapes if it could be quantified. This is
achieved through embeddings, which converts com-
plex and high-dimensional data into simple, low-
dimensional representations. This method is widely
used in machine learning, because simpler data - like
numbers and vectors, can be easily compared. It is
very difficult conversely, to directly compare simi-
larities between different shapes. A simple network

consisting of multiple convolutional and deconvolu-
tional (transposed convolutional) layers. The embed-
ding is obtained in the middle between the convolu-
tions (down-sampling) and the deconvolutions (up-
sampling). By formulating a training method where
given an input shape should result in the exact same
shape on output, we are essentially training a net-
work that is capable of encoding a low-dimensional
representation of shapes, and conversely decode it
back into the shapes. We can simply split the model
into decoding and encoding functions for us to en-
code and decode embeddings. We define the encoder
as fy, the encoder loss as Lg:

£¢ = £BCE(cat(VT, D;;)l)7 f¢ (C(It(vr, Dﬁ))) (26)

We improve upon the shape prior refinement pro-
cess by adding localized depth information as an ad-
ditional input channel. By adding localized depth
values into the encoding process, embeddings gen-
erated by the encoder effectively contains 3D sur-
face features of the shape, which means that it now
retains 3D memories of shapes. This is useful as it
means that shape refinement based on shape prior
can be significantly more specific, as a higher dimen-
sion allows for clearer distinction between different
seen shapes. Shapes that appear to be similar in 2D
might be vastly different when it is represented in 3D,
which is something the original 2D shape refinement
process is insensitive to.

We define the output embedding of the encoder fy4
as ®. We define the codebook which stores previous
embeddings as A, the search function finding n near-
est embeddings as fa. The nearest embeddings as a
collection {(I)iA}:'L:r

P2 = fa(®,n) € A (27)
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Fig.15: The encoder-decoder network setup, embedding is obtained at the middle of the network. Training
conducted by setting the loss as the difference between the output and the input, in which case they should be

the same.

After obtaining n nearest shapes, we define 3D
shape-prior refinement loss Ls),, shape-prior refine-
ment function f,, and shape-prior refinement amodal
mask Ag, as:

»Csp = »CBCE(f¢((I)A7 AT)7 A) (28)

It is expensive to compare similarity against every
single embedding, many shapes are also extremely
similar. We employ K-means clustering to cluster
similar embeddings. This way, we only have to com-
pare an embedding against every cluster in the code-
book to obtain the closest matching shape prior.

3.10 Point Cloud Aggregation

Most 3D networks conduct convolution, point cloud
aggregation or other feature extraction methods for
the entire scene. However, because the 2D RPN has
already produced highly accurate 2D proposals, it
can be projected onto the point cloud. Then, only
the proposal related regions will be aggregated and
extracted.

Because we have obtained a depth map that has pixel
to pixel correlation to our image I — D, we can
simply project our proposals onto point clouds, and
filter the neighboring points.

To project depth images to point clouds, we would
need to obtain calibration matrix M of the used cam-
era.

fz 0 ¢y
M= |0 fyc (29)
001

Datasets such as Kitti contains calibration matrices,
we could also calculate one using OpenCV, by taking
a picture of a checkerboard using the camera to be
calibrated, as shown in Figure 17. For i =1,--- | H;
j =1,--- ,W. We calculate the point cloud (rela-
tive 3D) coordinate of each proposal pixel ¥ of our
depth map as:

r =Djj
_(jfcx)xz
vh=¢Y = A (30)
) — X
- :(Z cy) X 2
Ty

We can then select the attentive point clouds ¥®
from ¥ with a hyper-parameter distance of A.

v ={aec?|

V(@ = TE )2 4 (o, — P )2 4 (0. — TP )2
< a}
(31)

Where WP is the closest proposal point to o € W.

For aggregation of filtered point clouds, we employ a
similar method to that of PV-RCNN [29].

O] = maX{G(\II?(i,v))} (32)
Where v denotes the extraction scale (how large the
receptive field is), ¢ denotes a voxel in voxel grid ©Y,
‘Ilj(i’v) denotes the points within range of voxel ©7, G
denotes a simple perceptron network for encoding the
point clouds, while max stands for a standard max-
pooling operator. The voxels extracted at different
scales are similar to that of the ResNet backbone
used for 2D Mask-RCNN, the final pooling operation
will select the voxel size that best fits the Rol size.

3.11 3D Detection based on BEV

We convert the final layer of the voxel extraction
grids to a BEV map, T, which can be seen sim-
ply as a multi-channeled image. Thus, R-CNN pro-
posal methods over 2D maps can be used. For which
T creates proposals {P/ }511 We denote fj as the
regional proposal network for T, which is identi-
cal to f,. We define BEV classification loss and
2D BEV box regression loss as Lgaes (Pﬂ P ) and

cls’ ™ cls
’C,BT‘GQ (Pgew Pgeg)'
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Fig.16: Embeddings of a batch of 3D shapes. Each embedding vector has a dimension of 1x392. The image
shows a batch of embeddings with dimensions 32 x 392, which means it consists of 32 individual embeddings.

Fig. 17: Calibration of camera using checkerboard on
the RGSD Openroads dataset.

Because the 2D proposal projection and attentive
point cloud filtering has already limited voxels to re-
gions where objects are very likely to exist, the bird
eye view can be seen as refining existing proposals
rather than proposing new ones. We are also able to
significantly increase the amount of proposals gener-
ated near objects than uniformly distributed.

Because objects are horizontal to the ground in the
scenario of autonomous driving, only one axis of rota-
tion need to be accounted for. While the BEV repre-
sentation already gives width and length of bounding
boxes, the height can also be easily deduced using the
pooled voxels. Thus, 2D proposals on BEV represen-
tations are essentially 3D. To further fine tune our
predictions, we use the 3D proposals to pool voxel
features from the appropriate voxel size. Traditional
methods for box regression with residuals is used for
3D proposal fine tuning using pooled features. A 3D

box refinement loss is defined as Lyeq(PP,,, P2,,)

3.12 Loss

The total loss of DAISnet £4,is (amodal instance seg-
mentation only) training is:

Edais = ‘Ccls + ‘Creg + AC'u + ‘Cac + Eoe + £¢> + »Csp (33)

For ESAAN;, the loss L is:

,C = »Cdais + »Cﬁcls + »Cﬁreg + »C’yreg (34)

4 Experiment

The aim of our experiment is to evaluate and prove
that incorporating depth information into amodal in-
stance segmentation tasks can yield better results.
Because we have introduced a multitude of ways in
which depth information can be used, an ablation
study will be carried out that evaluates the impacts
of each module on performance and different per
module configurations.

4.1 Datasets

Fig. 18: A single image from the KINS dataset, com-
plete with bounding boxes and amodal masks.

KINS Dataset For training and evaluation of our
model, we used the KINS dataset [32] which provides
amodal and visible annotations of objects. The KINS
dataset is based upon the KITTI dataset, which pro-
vides the KITTI Eigen Split depth dataset for which
our monocular depth prediction module is trained
upon. This ensure the quality of depth predictions
while maintaining RGB as the only ground truth in-
put for inference. There is a total of 7474 images for
training and 7517 images for evaluation. Annotations
in the KINS Dataset are stored in vector masks, it is
rasterized into bitmasks prior to training. The KINS
Dataset is widely used in amodal instance segmen-
tation research, many models were trained and eval-
uated using KINS. This provides a common bench-
mark for comparasion between different methods.

RGSD Dataset All synthetic data are captured
in 1280 x 720 pixel resolution on an M1 Max using
Unity Engine. The synthetic training dataset com-
prises of 10000 city scenes, 10000 street scenes and
20000 open road scenes. The validation dataset con-
tains 1000 sets, where 400 are open road and 300
for both street and city. It includes the RGB image,
the ground truth depth, amodal and visible masks of
objects stored in a bitmask format.



4.2 Model Set-up

Depth Prediction Module Training of the
Monocular Depth Prediction Module for KITTI is
done using a single RTX3070ti with 46375 iterations
with a batch size of 2 over 14 epochs. The synthetic
dataset is trained over 19000 iterations with a batch
size of 2 over 14 epochs. Both models used a learn-
ing rate of 0.0001 with 0.01 linear decay. To opti-
mize training speed and memory usage, the depth
prediction module is loaded in inference mode dur-
ing amodal instance segmentation, it does not take
part in training. Although depth information is in-
ferred from RGB inputs, a single image always pro-
duces the same result. A cache mechanism is used to
reload depth data from disk if it has been predicted
before. This reduces training time from 10 hours to
3 hours, more than 3 times quicker.

Amodal Instance Segmentation The project is
setup and implemented using a modified version of
Detectron2 [33], which has a Mask-RCNN imple-
mented using Pytorch and CUDA. Our project was
trained on Ubuntu 20 using Python 3.6, Pytorch
1.4 and CUDA 10.1. Training is conducted on single
Nvidia Tesla V100 instances. We used the ResNet-
50 weights trained on ImageNet Classification as our
pretrained weight for our feature extraction back-
bone, we also used weights from monocular depth
prediction, as well as random weights. Depending on
the configuration, data like depth and normal tan-
gent will effect the input channel count for feature
extraction. To preserve the pretrained weights, the
first convolution layer will expand and repeat its
three channel weights. For an input channel count
of 9, the pretrained weights will be repeated three
times. There are a total of 47979 iterations, the KINS
dataset is further post-processed with random crop,
rotation and color filters to enlarge the dataset.

Learning Rate A base learning rate of 0.0025 was
chosen for training, this works particularly well with
the pretrained ImageNet backbone. However, for ran-
domly initialized weights, the loss becomes infinite
or not defined (due to division by zero) after a few
hundred to thousand iterations depending on the
configured complexity. A lower learning rate solves
this problem, but it also means the model might not
be trained to its best performance. Learning rate
warmup is a typical approach for solving high loss
training. Constant warmup specifies a lower learning
rate for a given number of iterations. Linear warmup
increases the learning rate linearly from zero for a
given number of iterations. We observe that during
training, both constant and linear warmup methods
are not suitable for our scenario; Loss either con-
verge too slow, or the initial learning rate remains
too high. We introduce a smooth warmup method,
which increases the learning rate at a given power:
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Iy = (z)p X f % lrg (35)

Where lr,, is the warmup learning rate, Iry is the
final learning rate, ¢ is the current iteration, ¢ is the
warmup iteration count, p is the warmup power, and
f is the constant warmup factor.

For random weights, we used Iry = 1.0, p = 1.3, t =
15000.

Post Processing Post processing of training data
is commonly used to increase volume of the train-
ing set without actually acquiring additional data.
The KINS dataset provides 7000 images for train-
ing, which is significantly lower than datasets used
for instance segmentation and object detection for
a task that is overall more difficult. A post process-
ing layer creates variants of the same image, such
as flipping the image horizontally, changing the con-
trast, and randomly crop the image. Post Processing
is however computationally expensive, it drastically
increases training time. For the ablation study, post
processing will be disabled for all tests. We notice a
15% drop in performance with post processing dis-
abled.

4.3 Synthetic Augmentation

For ESAAN with 3D object detection, our main con-
cern is finding out if appending additional synthetic
data improves the accuracy of our model. Using our
RGSD-LIDAR subset, we will train ESAAN on 8000
unique iterations with 50 epochs. Then, we will train
the model using the standard Kitti dataset, but keep-
ing the initial weights optained through synthetic
training. We will compare our model with other net-
works to see if it enhanced 3D detection performance.

4.4 Metrics

Average Precision, or AP, is a method for evaluating
performance and accuracy of object detection and
segmentation problems. For our evaluation, we used
Average Precision, Mean Average Precision and Aver-
age Recall to evaluate performance of different mod-
els.

The confusion matrix maps out all possible combi-
nations of results as shown in Fig 19. If a result is
predicted, it is considered positive; If a result is not
predicted, it is considered negative. If the prediction
is correct, it is considered true, otherwise it is con-
sidered false. Thus, we have True Positive TP, False
Positive F'P, True Negative TN and False Negative
FN.

An important metric in determining Bounding Box
precision is the Intersection over Union, also known
as IoU:



14 Yang et al.
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Fig. 19: Confusion Matrix
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Fig. 20: Area of Overlap vs Area of Union

_ |AnB|

IoU = =21
¢ |AU B

(36)

Where A, B describes the predicted and ground truth
bounding box.

IoU is used to determine whether a prediction is True
or False. This depends on an IoU threshold. If the
predicted IoU is above this threshold, the result is
considered true. Using the confusion matrix, we can
determine Precision and Recall:

TP TP

7P+ Fp el = Fp i EN
(37)

Precision =

Precision depicts how many predictions are correct
across all predictions. It evaluates how many cor-
rect predictions are made among all predictions. Re-
call depicts how many correct predictions are made.
It evaluates how many correct predictions are made
among all correct results.

We use the area under the precision recall curve to
calculate Average Precision. However, the precision
recall curve is not a continuous function, so we can

0 o1 02 03 o4 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1

Recall Recall

Precision Recall Curve Approx. AP

Fig. 21: Average Precision is the area under a Preci-
sion Recall Curve, which is precision over recall.

only obtain approximations of the area. One method
is to use rectangles to estimate area under the curve
as shown in Fig 21.

Calculation of Average Precision is usually for a sin-
gle class of objects. For the representation of all
classes, we use Mean Average Precision (mAP):

N
1
AP = — AP, 38
m ¥ E (38)

Where N is the number of classes, AP; is the average
precision of a single class.

Similarly, Average Recall (AR) is twice the area un-
der a Recall over IoU curve. Similar approximation
methods are used to calculate the area.

For both AR and AP, the number behind states
the ToU threshold for determining true and false re-
sults. ARy represents an average recall with 0.5 IoU
threshold or 50%.

Comparisons To further evaluate our network’s
performance, we will compare our best setup with
other commonly used methods such as Mask R-CNN
and PANet. All networks used the KINS dataset for
evaluation. Post processing will be applied to our fi-
nal setup during training.

5 Evaluation and Ablation Study

We conducted an ablation study on our network
by testing out different setups and combinations of
features. The aim of our study is to evaluate how
depth information improves amodal instance seg-
mentation performance, and what are the most ef-
fective methods of using the depth information. The
complete table of results is shown in Table 2. R,
D, N O and S stands for RGB, Depth, Normalm
Occlusion Edge and 3D shape prior respectively. A
checkmark v'symbol denote this component is en-
abled for the given row, other special characters rep-
resent the use of a variation of this component. Depth
with N for example, means depth without normaliza-
tion. Abbreviations will also be used to describe con-
figurations, the order of components follows that of



Fig. 22: Amodal instance segmentation results from
ImageNet weights using RGB and occlusion edge re-
finement.

the table. For instance, random weights with RGB,
depth without normalization, and normal tangent
with medium sized filter is described as Random
R+DN+NM.

5.1 Backbone

Our feature extraction backbone used the ResNet50
architecture, by using a standard backbone, we can
use transfer learning to improve our network’s per-
formance. A separate and complete ablation study is
done for both weights. We are using random weights
because we want to evaluate the pure performance
improvements from using depth information. A back-
bone with pretrained weights that are obtained from
other tasks may effect the results of our study neg-
atively. Conversely, most amodal instance segmenta-
tion networks utilize a pretrained backbone feature
extractor, which results in significant performance
boost from using random weights. We will evaluate
how well depth information copes with pretrained
weights that is not depth aware.

As seen in Table 2, there is around a 30% improve-
ment in accuracy from random weights to ImageNet
weights. Imagenet R+N has an AP of 22.83, while
Random R+N has an AP of 16.52 only. This demon-
strates that even for weights that were not trained
on depth information still yields better results than
random weights.

5.2 Depth

The most basic approach towards incorporating
depth in amodal instance segmentation is by feed-
ing it through the feature extraction backbone. By
doing this, the entire network will conduct instance
segmentation and amodal segmentation tasks using
depth-aware feature maps.

Usefulness By concatenating normalized depth in-
formation consisting of 4 channels by default to the
RGB input, there is a 25% increase in AP from Ran-
dom R to Random R+D. This demonstrates that
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using depth information does result in significant
improvements for amodal instance segmentation. To
further examine whether depth information can ac-
tually provide features for amodal instance segmen-
tation, the network is trained on depth without us-
ing any RGB information. Random D is 18% lower
in AP than Random R, and 35% lower in AP than
Random R+D. An AP of 10.84 means that the net-
work is still able to infer reasonable results soley from
depth data. We can also conclude that depth infor-
mation cannot substitute RGB data, which is logical
as RGB information provides surface features that
depth is insensitive to.

Impact of Regional Depth Normalization As
mentioned in the methods section, a regional depth
normalization pass was done over the depth infor-
mation before feeding it to the feature extractor. To
evaluate the impact of said normalization, we tested
the model without normalization, denoted by N. For
both Random R+DN and ImageNet R+DN, there
was only marginal improvements in AP when us-
ing regional normalization, still this means that the
model performed worse without regional normaliza-
tion. Evaluation on the impact of step size and subre-
gion intervals were also conducted. ImageNet R+D1,
which represents regional depth normalization with
a subregion count of 1, essentially not creating subre-
gions. This results in a small 1% decrease in AP and
other metrics. ImageNet R+DS1 represents normal-
ization with a step size of 1, which is 2/3 less than
the default step size of 3. This means depth informa-
tion is far more localized and distance specific. As
hypothesized in the method section, a smaller step
size does lead to a drop in AP of 2%, likely caused
by over-fitted local variations.

5.3 Normal Tangent

Depth information can be further processed into nor-
mal tangent maps. Normal tangent maps describe
the surface tangent at a given pixel. This is differ-
ent from depth information as normal tangent maps
provide an explicit representation of 3D surface fea-
tures, while depth only provide it implicitly to the
network.

Usefulness We have to first evaluate if normal tan-
gent information can be perceived well by the feature
extraction backbone. Normal tangent information is
different from depth as depth information can be rep-
resented well within in one channel. Normal tangents
are represented in 3 channels, representing the x, y
and z components of the unit vector at a given pixel.
There is no implicit separation between RGB and
xyz channels, which might also negatively effect re-
sults. ImageNet R+N yields an AP of 24.37, which is
6% higher than that of ImageNet R+D. This shows
that normal information is more useful than depth
information for amodal instance segmentation.
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Table 1: Results on Amodal Instance Segmentation

R D N O S stands for RGB, Depth, Normal, Occlusion Edge and 3D Shape Prior
N stands for raw depth without normalization; S1 stands for regional normalization with subregion of 1; O1 stands for

regional normalization with offset interval of 1; M stands for medium sized sobel filter; L stands for large sized sobel

filter; V stands for visible only depth

Weights R DN O S ||AP AP50 |AP75 |APs AP, AP AR1 AR10 [AR100
Random v 13.20 28.02 10.20 18.21 17.86 14.48 10.51 25.10 28.76
Random v v 16.52 31.49 15.60 22.26 21.28 16.87 11.91 27.72 30.14
Random v N 16.42 31.64 15.50 21.68 20.52 17.22 11.96 27.72 30.14
Random v 10.84 20.71 10.52 14.00 13.09 11.68 7.98 18.32 20.05
Random v v 9.55 20.10 8.02 12.20 11.74 10.08 6.72 16.98 19.03
Random v 11.26 21.38 10.83 14.66 13.45 11.74 8.39 18.89 20.52
Random v v v 16.13 30.71 15.26 21.56 20.52 17.59 11.16 26.77 29.21
Random v v 17.19 [32.62 16.38 23.02 21.94 18.09 12.38 28.29 30.61
Random v v v 17.17 23.57 16.30 23.58 22.44 18.15 12.68 28.59 30.91
Random v v v 9.74 20.33 8.38 12.53 12.25 10.41 6.65 17.50 19.66
Random v v vV 10.11 21.34 8.50 12.99 12.37 10.61 7.30 18.46 20.59
ImageNet v v 22.83 40.77 22.97 28.54 26.53 22.17 15.94 33.41 35.36
ImageNet v 01 22.19 39.90 22.26 27.97 26.22 22.36 15.76 32.67 34.64
ImageNet v Sl 22.35 39.93 22.49 28.20 26.39 22.42 16.00 33.04 33.04
ImageNet v N 22.57 40.47 22.51 28.28 26.52 21.82 15.69 32.79 34.86
ImageNet v v 24.37 44.02 24.48 30.05 29.08 24.45 16.77 35.56 37.98
ImageNet v M 17.35 32.55 16.32 22.32 20.82 16.96 12.84 26.76 28.50
ImageNet v L 16.25 31.04 15.12 21.19 19.79 16.27 12.11 25.30 27.05
ImageNet v v [|24.62 45.63 24.13 30.41 27.67 23.83 16.84 32.60 36.63
ImageNet v V ||24.01 45.58 22.92 30.14 28.49 23.58 16.88 32.55 36.62
ImageNet v v v 23.11 41.22 23.44 29.11 27.36 22.74 16.39 33.90 35.93
ImageNet v v 25.41 |44.98 25.64 30.73 29.27 24.59 17.45 35.81 37.89
ImageNet v v v 23.00 40.80 23.48 28.59 27.02 22.60 16.23 33.65 28.15
ImageNet v v v 17.13 32.32 16.05 22.26 20.67 16.93 12.46 26.33 28.15
ImageNet v v vV 16.93 31.72 16.16 22.27 2.23 17.53 12.73 26.64 28.43

Accuracy and Sensitivity The normal map de-

duced from the depth information is only an estimate

in surface tangents, it is not the physical geometrical

tangents. Since the normal map information is not

completely accurate, how well do different parame-

ters effect estimations is also important. As described

in the method section, different kernel sizes for the

sobel filter effect how large of a gradient the nor- %] = miﬂii

mal map is sensitive to. Larger kernel sizes reflect a o —— Mode3

broader change in gradient, at the cost of less details.

We experimented with ImageNet R+NM, ImageNet g 061

R+NL, which stands for medium and large kernel B

sizes respectively. The medium kernel has a size of “E 0.5 1

21x21, while the large kernel has a size of 71x71. Re- %

sults show that there is a 29% drop in AP for the c‘)_d 041

medium filter, and a further 34% drop in AP for

the large filter. This means that the improvements >3]

in overall tangent accuracy does not compensate for ol

the loss in detail. Furthermore, the backbone network
ResNet50 uses convolutional kernels larger than 1x1,
which increases the perceptive field of a given pixel.
This may implicitly create a representation of more
comprehensive gradient changes without sacrificing
detail.

5.4 Occlusion Edge Refinement

Occlusion edge refinement differs from other compo-
nents in that it does not affect the overall network in
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Fig. 23: Loss of different network setups for EO Re-
finement Layer



feature extraction, object detection and visible seg-
mentation. As described in the method section, there
were multiple network setups for the occlusion edge
refinement module. The networks were first evalu-
ated with how well loss decreased before using the
best network for amodal instance segmentation.

Network Setup Results indicate that Mode 2,
which mimics the network setup of the amodal mask
head, reaches the lowest loss using the least time. The
eo loss of different modes over iteration is shown in
Fig.23. Mode 3 yields the highest loss. Although it is
hypothesized that Mode 1 which uses a micro FCN
implementation should perform best, this is now the
case. We believe this is due to either insufficient infor-
mation, over-complicated network or improper con-
figurations. Mode 3 performs the worst because the
network is too simple, it only infers occlusion edge
based on local depth values, and do not take in ac-
count of more general depth patterns.

Usefulness The EO refinement layer has the single
most improvement to amodal instance segmentation
compared to other configurations. Random R+O is
30% higher in AP than Random R. ImageNet R+O
is 11% higher in AP than ImageNet R+D. We be-
lieve this is because the EO refinement layer has the
most explicit use of depth information. Since EO re-
finement occurs after visible mask segmentation, it
can use the visible regions of an object to conduct
per object depth normalization. This is extremely
useful, as any region with depth value above that of
the visible maximum is guaranteed to not to be oc-
cluded, and any region with depth value lower than
that of the visible minimum is likely to be occluded.
Even an algorithm can infer plausible results using
this information.

5.5 3D Shape Prior Refinement

The 3D shape prior refinement is denoted by S in Ta-
ble 2. 3D Shape Prior Refinement combines depth
information during embedding encoding and decod-
ing. The original shape prior implementation [6]
used coarse amodal masks from Mask-RCNN to con-
duct shape prior matching. Depth information how-
ever, is not entirely reflective of the actual object
because it contains occluded regions. Depth of oc-
cluded regions of an object are not the actual depth
of these objects. We differentiate these depths by de-
noting depth in visible regions as object-only depth.
ImageNet R+S results in the second highest AP after
Occlusion Edge Refinement. There is a 7% improve-
ment in AP from ImageNet R+D baseline. ImageNet
R+SV, which only uses the object only depth, yields
an AP of 24.01, which is 2% less than using all the
depth. We can conclude that depth in occluded re-
gions does in fact contribute to 3D shape prior refine-
ment. This might be because the shape prior refine-
ment also implicitly memorize occlusion scenarios. If
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Table 2: Results on KINS dataset, average precision
of amodal segmentation.

We compared our model’s results against other methods.
The DAISnet result was trained using ImageNet + RGB
+ Edge Refinement + Post Processing

Model AP

Mask R-CNN [34] [24.93
PANet [32] 27.39
BCNet [35] 28.87
DAISnet (Ours) [31.48

the same region was occluded and has a higher depth
value, it is reasonable to assume the same for similar
cases.

5.6 Combinations

We also tested different combinations of components
to see if there is additional performance improve-
ments, such as using depth and normal information
together. It is logical to assume that if both compo-
nents improved performance, then the combination
of said components should further improve perfor-
mance. But according to our experimental results,
this is not the case. We first evaluate the perfor-
mance of combining depth and normal information.
Random R+D-+N is 3% lower in AP than Random
R+D. ImageNet R+D+N is 1% better than Ima-
geNet R+D, but 5% lower than ImageNet R+N. This
shows that there is no guaranteed improvement when
adding depth and normal data together. We conclude
that this is because normal tangents already provide
the same 3D features that depth provide, and in a
more explicit way without the issues distance varia-
tion poses.

We also experimented on combining depth-aware fea-
ture extraction and occlusion edge refinement. There
was marginal difference in adding depth features to
occlusion edge, Random R+D+0O is only 0.2% less
in AP than Random R-+0O, while ImageNet R+D-+0O
is 10% less in AP than ImageNet R+O. We believe
this is due to potentially similar roles both compo-
nents play. The depth features extracted from R+D
is implicitly used for amodal attention. Since the oc-
clusion edge refinement layer uses a similar architec-
ture to the amodal mask head, it is likely that both
modules have used depth in a similar way to pre-
dict the amodal mask. However, since the occlusion
edge refinement layer uses per object normalization,
it should perform better, which explains why the oc-
clusion edge component outperforms depth feature
extraction. The use of 3D shape prior and occlusion
edge proves that explicit 3D features at region of in-
terest levels improve amodal segmentation results.
Implicit uses of 3D features may require further in-
vestigation for improvements in results.
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Table 3: Results on 3D Object Detection

Model Car Car Car Ped. Ped. Ped. Cyc. Cyc. Cyc.
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
PointPillar [36] 95.66  [92.24 [91.32 [[66.55 [62.50 [59.33 [[85.27 [73.00  |69.02
SECOND [37] 95.63 [94.17 [91.77 [[68.73 [66.33 [63.26  [[87.56 [77.09  |74.38
Point-RCNN [2§] 96.59 [92.93  [90.55 [[73.70 [65.81 [62.09 [[89.36 [76.91 [75.17
PV-RCNN [29] 95.90 [93.82 [91.74 [|72.23 [66.02 [63.43 [[95.27 [80.96 |76.18
[ESAAN (Ours) [[98.90 [94.57 [94.16 [[72.86 [67.99 [65.28 [[88.04 [82.05 [76.24 ||

5.7 Synthetic Augmentation

We trained our synthetic ESAAN with 30 epochs,
then trained it on Kitti with 50 epochs. We compared
this model with other implementations which has all
been trained over 8000 epochs. The results can be
seen in Table 3. All of the metrics used Average Pre-
cision over Bounding Box Prediction. For Cars, the
evaluation was done using AP-R40Q70; For Pedes-
trians (Ped.), the evaluation was done using APQ50;
For Cyclists (Cyc.), the evaluation was done using
AP@50. It is evident that our model outperforms in
accuracy in almost every metric compared to other
implementations, with significantly less epochs and
training time. Especially in hard scenarios where our
synthetic dataset was prepared for. This proves that
using synthetic datasets for training 3D detection
tasks can greatly enhance network accuracy.

5.8 Limitation and Future Works

Evaluation results show that although DAISnet has
utilized depth-aware 3D features to improve amodal
instance segmentation performance, there are still
some limitations. Computed tangent normals are not
the actual geometric normals of objects, a method of
predicting geometric normals using neural network
should be made. Depth-based 3D features can be fur-
ther incorporates into the model by combining the
monocular depth prediction module with DAISnet,
which provides additional 3D-aware features during
monocular depth prediction that might be useful.
Current region of interest and mask logit resolutions
remain low at 14x14, optimization techniques on in-
creasing Rol resolution is worth investigating. Syn-
thetic augmentation can be further improved with
larger datasets, longer training epochs, and more rig-
orous scenarios. Longer training epochs may yield
even higher levels of accuracy compared to existing
models.

6 Conclusion

We proposed a novel depth-aware amodal instance
segmentation network (DAISnet) that used depth in-
formation to infer 3D features and occlusion infor-
mation. This model contains regional depth normal-
ization, normal tangent computation and occlusion
edge refinement methods that implicitly and explic-
itly utilize the depth information. We also developed

a method of obtaining a synthetic dataset that con-
tains depth and amodal mask annotations to address
the difficulty of acquiring depth and amodal ground
truths. Our experiments demonstrated that depth in-
formation and subsequent 3D features extracted im-
plicitly and explicitly brings notable improvements
to amodal instance segmentation performance. We
have proven that using synthetic data to augment
training on existing datasets, results in significantly
higher accuracy.
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